Please use this identifier to cite or link to this item:
https://repositorio.ufpa.br/jspui/handle/2011/15625
metadata.dc.type: | Artigo de Periódico |
Issue Date: | Feb-2012 |
metadata.dc.creator: | SOARES, Siomar de Castro ABREU, Vinicius Augusto Carvalho de RAMOS, Rommel Thiago Juca CERDEIRA, Louise Teixeira SILVA, Artur Luiz da Costa da BAUMBACH, Jan TROST, Eva TAUCH, Andreas HIRATA JÚNIOR, Raphael GUARALDI, Ana Luiza de Mattos MIYOSHI, Anderson AZEVEDO, Vasco Ariston de Carvalho |
metadata.dc.description.affiliation: | RAMOS, R. T. J.; CERDEIRA, L. T.; SILVA, A. L. C. Universidade Federal do Pará |
Title: | PIPS: Pathogenicity Island Prediction Software |
metadata.dc.description.sponsorship: | CNPq - Conselho Nacional de Desenvolvimento Científico e Tecnológico FAPEMIG - Fundação de Amparo à Pesquisa do Estado de Minas Gerais |
Citation: | SOARES, Siomar C. et al. PIPS: Pathogenicity Island Prediction Software. PLoS ONE, online, v. 7, n. 2, e30848, Feb. 2012. DOI: https://doi.org/10.1371/journal.pone.0030848. Disponível em: http://repositorio.ufpa.br/jspui/handle/2011/15625. Acesso em:. |
Abstract: | The adaptability of pathogenic bacteria to hosts is influenced by the genomic plasticity of the bacteria, which can be increased by such mechanisms as horizontal gene transfer. Pathogenicity islands play a major role in this type of gene transfer because they are large, horizontally acquired regions that harbor clusters of virulence genes that mediate the adhesion, colonization, invasion, immune system evasion, and toxigenic properties of the acceptor organism. Currently, pathogenicity islands are mainly identified in silico based on various characteristic features: (1) deviations in codon usage, G+C content or dinucleotide frequency and (2) insertion sequences and/or tRNA genetic flanking regions together with transposase coding genes. Several computational techniques for identifying pathogenicity islands exist. However, most of these techniques are only directed at the detection of horizontally transferred genes and/or the absence of certain genomic regions of the pathogenic bacterium in closely related non-pathogenic species. Here, we present a novel software suite designed for the prediction of pathogenicity islands (pathogenicity island prediction software, or PIPS). In contrast to other existing tools, our approach is capable of utilizing multiple features for pathogenicity island detection in an integrative manner. We show that PIPS provides better accuracy than other available software packages. As an example, we used PIPS to study the veterinary pathogen Corynebacterium pseudotuberculosis, in which we identified seven putative pathogenicity islands. |
Keywords: | Corynebacterium pseudotuberculosis |
Series/Report no.: | PLoS ONE |
ISSN: | 1932-6203 |
metadata.dc.publisher.country: | Estados unidos |
Publisher: | Public Library of Science |
metadata.dc.publisher.initials: | PLOS |
metadata.dc.rights: | Acesso Aberto |
metadata.dc.source.uri: | https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0030848#ack |
metadata.dc.identifier.doi: | 10.1371/journal.pone.0030848 |
Appears in Collections: | Artigos Científicos - ICB |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Article_PipsPathogenicityIsland.pdf | 861,76 kB | Adobe PDF | View/Open |
This item is licensed under a Creative Commons License