SIBI! EM BREVE O RIUFPA ESTARÁ LIBERADO! AGUARDEM!
 

Desenvolvimento de sistema de diagnóstico de falhas em roletes de transportadores de correia

Imagem de Miniatura

Data

28-03-2024

Afiliação

Título da Revista

ISSN da Revista

Título de Volume

item.page.theme

Tipo de acesso

Acesso Abertoaccess-logo

Contido em

Citar como

SOARES, João Lucas Lobato. Desenvolvimento de sistema de diagnóstico de falhas em roletes de transportadores de correia. Orientador: Alexandre Luiz Amarante Mesquita. 2024. 123 f. Dissertação (Mestrado em Engenharia de Infraestrutura e Desenvolvimento Energético) – Núcleo de Desenvolvimento Amazônico em Engenharia, Universidade Federal do Pará, Tucuruí, 2024. Disponível em: https://repositorio.ufpa.br/jspui/handle/2011/16511. Acesso em:

DOI

Os transportadores de correia são equipamentos essenciais na indústria de mineração e requerem monitoramento constante para manter uma boa confiabilidade. Com o objetivo de suportar a correia e o material transportado, os roletes são componentes que, constantemente, falham durante a operação, nos quais apresentam defeitos nos rolamentos e desgaste superficial na concha como modos de falha mais comuns. Assim, o monitoramento baseado em manutenção preditiva é essencial, e técnicas de aprendizado de máquina podem ser utilizadas como alternativa para detecção de falhas em equipamentos. Em diagnósticos utilizando aprendizado de máquina, a etapa de seleção de features é importante para evitar a perda de precisão na classificação da condição do equipamento. O presente estudo analisa o desempenho do algoritmo de árvore de decisão e Análise de Variância (ANOVA) como métodos alternativos para redução de dimensionalidade. Inicialmente, os sinais de vibração foram coletados nos roletes de uma bancada de transportador de correia e a Wavelet Packet Decomposition (WPD) foi aplicada aos sinais para obtenção das faixas de energia, que foram utilizadas como features para classificação. Após a determinação das melhores features, duas abordagens foram analisadas para seleção de características: uma com a aplicação do método sem redução de dimensionalidade e outra com a aplicação da árvore de decisão. Adicionalmente, foram empregados diferentes algoritmos de classificação: Máquina de Vetores de Suporte (SVM), k-ésimo Vizinho mais Próximo (kNN) e Rede Neural Artificial (ANN). Como resultados, constatou-se um desempenho superior de acurácia diagnóstica em todas as técnicas com redução de dimensionalidade das características selecionadas pela árvore de decisão. Além disso, SVM, kNN e ANN apresentaram aumentos de acuracidade dentre os modelos de diagnóstico de falha abordados.

browse.metadata.ispartofseries

Área de concentração

País

Brasil

Instituição

Universidade Federal do Pará

Sigla da Instituição

UFPA

item.page.isbn

Fonte

item.page.dc.location.country