Use este identificador para citar ou linkar para este item:
https://repositorio.ufpa.br/jspui/handle/2011/16649
Tipo: | Dissertação |
Data do documento: | 29-Set-2023 |
Autor(es): | SILVA, Romário da Costa |
Primeiro(a) Orientador(a): | FRANCÊS, Carlos Renato Lisboa |
Primeiro(a) coorientador(a): | FERREIRA JÚNIOR, José Jailton Henrique |
Título: | Identificacao de larvas de mosquitos do genero aedes utilizando redes neurais convolucionais |
Agência de fomento: | CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior |
Citar como: | SILVA, Romário da Costa. Identificacao de larvas de mosquitos do genero aedes utilizando redes neurais convolucionais. Orientador: Carlos Renato Lisboa Francês; Coorientador: José Jailton Henrique Ferreira Júnior. 2023. 71 f. Dissertação (Mestrado em Engenharia Elétrica) - Instituto de Tecnologia, Universidade Federal do Pará, Belém, 2023. Disponível em:https://repositorio.ufpa.br/jspui/handle/2011/16649 . Acesso em:. |
Resumo: | As arboviroses transmitidas pelos mosquitos do gênero Aedes constituem uma séria ameaça à saúde pública. A detecção e o controle desses vetores são fundamentais para prevenir surtos de doenças, incluindo Dengue, Chikungunya, Zika e Febre Amarela. As técnicas de visão computacional e aprendizagem profunda tem sido cada vez mais utilizadas no controle epidemiológico, principalmente, no que tange à classificação e detecção destes mosquitos. Nesse sentido, propõe-se três modelos voltados para classificação, detecção e segmentação de larvas dos mosquitos baseado na utilização de redes neurais convolucionais (CNN) e algoritmos de detecção de objetos (YOLO). Para tanto, foi criado um conjunto de dados (dataset) próprio para treinamento. O dataset é composto por imagens de larvas, sendo categorizadas entre as classes Aedes e Não Aedes. Os resultados obtidos indicam que os modelos propostos se apresentam como estratégias promissoras e alcançaram valores de acurácia de 86,71%, mAP (Mean Average Precision) de 88,3% e 95,7% para as tarefas de classificação, detecção e segmentação, respectivamente. |
Abstract: | Arboviruses transmitted by mosquitoes of the Aedes genus constitute a threat to public health. Detection and control of these vectors are critical to preventing disease outbreaks including Dengue, Chikungunya, Zika and Yellow Fever. Computer vision and deep learning techniques have been increasingly used in epidemiological control, mainly with regard to the classification and detection of these mosquitoes. In this sense, three models are proposed for classification, detection and segmentation of mosquito larvae based on the use of convolutional neural networks (CNN) and object detection algorithms (YOLO). For this purpose, a dataset was created for training purposes. The dataset is composed of images of larvae, being categorized between Aedes and Non-Aedes classes. The results show that the proposed models are promising strategies and achieved accuracy values of 86.71%, mAP (Mean Average Precision) of 88.3% and 95.7% for the tasks of classification, detection and segmentation, respectively. |
Palavras-chave: | Redes neurais Arboviroses Visão computacional Aprendizagem profunda Computer vision Deep learning. Arboviruses Neural networks |
Área de Concentração: | COMPUTAÇÃO APLICADA |
Linha de Pesquisa: | INTELIGÊNCIA COMPUTACIONAL |
CNPq: | CNPQ::ENGENHARIAS::ENGENHARIA ELETRICA::TELECOMUNICACOES |
País: | Brasil |
Instituição: | Universidade Federal do Pará |
Sigla da Instituição: | UFPA |
Instituto: | Instituto de Tecnologia |
Programa: | Programa de Pós-Graduação em Engenharia Elétrica |
Tipo de Acesso: | Acesso Aberto Attribution-NonCommercial-NoDerivs 3.0 Brazil |
Fonte URI: | Disponível na internet via correio eletrônico: bibliotecaitec@ufpa.br |
Aparece nas coleções: | Dissertações em Engenharia Elétrica (Mestrado) - PPGEE/ITEC |
Arquivos associados a este item:
Arquivo | Descrição | Tamanho | Formato | |
---|---|---|---|---|
Dissertacao_IdentificacaoLarvasMosquito.pdf | 12,21 MB | Adobe PDF | Visualizar/Abrir |
Este item está licenciado sob uma Licença Creative Commons