Arquitetura de modelos híbridos, machine learning e otimizadores para análise de consumo de energia elétrica e produtividade em pintura automotiva

Imagem de Miniatura

Data

27-03-2024

Afiliação

Título da Revista

ISSN da Revista

Título de Volume

item.page.theme

Tipo de acesso

Acesso AbertoAttribution-NonCommercial-NoDerivs 3.0 Brazilaccess-logo

Agência de fomento

Contido em

Citar como

OLIVEIRA, Rafael Barbosa de. Arquitetura de Modelos Híbridos, Machine Learning e Otimizadores para Análise de Consumo de Energia Elétrica e Produtividade em Pintura Automotiva. Orientador: Roberto Célio Limão de Oliveira. 2024. 70 f. Dissertação (Mestrado em Engenharia Elétrica) - Instituto de Tecnologia, Universidade Federal do Pará, Belém, 2024. Disponível em:https://repositorio.ufpa.br/jspui/handle/2011/16743 . Acesso em:.

DOI

Estratégias de otimização de consumo energético nas etapas de pintura emergem como fatores primordiais para promover uma produção mais sustentável e competitiva no setor automotivo. Esta dissertação busca prever o consumo energético e maximizar a produtividade na pintura automotiva, utilizando uma abordagem que combina seleção de variáveis, modelos híbridos, hiperparâmetros destes modelos e otimização por meta-heurística em uma arquitetura com 3 etapas. Os processos de pintura automotiva apresentam variáveis em forma de séries temporais que descrevem o histórico do consumo de energia. Na etapa 1, escolhe-se o melhor modelo de aprendizado de máquina (Random Forest, Long-Short Term Memory, XGBoost e GRU-LSTM) para prever séries temporais do consumo energético em t+1. Na etapa 2, avalia-se os modelos RF, XGBoost e Rede Neural Artificial (RNA) Densa para selecionar o melhor preditor de quantidade de veículos produzidos (ciclos). Na etapa 3, seleciona-se a melhor meta-heurística entre Genetic Algorithm (GA), Differential Evolution (DE) e Particle Swarm Optimization (PSO) para otimizar o consumo energético previsto pelo melhor modelo do step 1, usando como medida de fitness o melhor modelo do step 2. A arquitetura final reduziu a energia consumida em até 16% e aumentou o ciclo em 127%, usando os modelos GRU-LSTM na etapa 1, RNA Densa na etapa 2 e DE no etapa 3. Os resultados ressaltam a oportunidade de uso da abordagem proposta para otimizar o consumo de enrgia e a produtividade na pintura automotiva.

browse.metadata.ispartofseries

Área de concentração

País

Brasil

Instituição(ões)

Universidade Federal do Pará

Sigla(s) da(s) Instituição(ões)

UFPA

item.page.isbn

Fonte

item.page.dc.location.country

Fonte URI

Disponível via internert através do correio eletrônico: bibliotecaitec@ufpa.br