Use este identificador para citar ou linkar para este item:
https://repositorio.ufpa.br/jspui/handle/2011/14867
Tipo: | Artigo de Periódico |
Data do documento: | 2021 |
Autor(es): | OLIVEIRA, Ailton Pinto de NASCIMENTO, Arthur Matheus do COSTA, Walter Tadeu Neves Frazão da TRINDADE, Isabela Pamplona BASTOS, Felipe Henrique Bastos e GOMES, Diego de Azevedo MÜLLER, Francisco Carlos Bentes Frey KLAUTAU JÚNIOR, Aldebaro Barreto da Rocha |
Afiliação do(s) Autor(es): | OLIVEIRA, A. P.; NASCIMENTO, A. M.; COSTA, W. T. N. F.; TRINDADE, I. P.; BASTOS, F. H. B., MÜLLER, F. C. B. F.; KLAUTAU JÚNIOR, A. B. R. Universidade Federal do Pará |
Título: | Simulation of machine learning-based 6G systems in virtual worlds |
Citar como: | OLIVEIRA, Ailton et al. Simulation of machine learning-based 6G systems in virtual worlds. ITU Journal on Future and Evolving Technologies, online, v. 2, n. 4, p. 113-123, 2021. DOI: https://doi.org/10.52953/SJAS4492. Disponível em: http://repositorio.ufpa.br:8080/jspui/handle/2011/14867. Acesso em:. |
Abstract: | Digital representations of the real world are being used in many applications, such as augmented reality. 6G systems will not only support use cases that rely on virtual worlds but also benefit from their rich contextual information to improve performance and reduce communication overhead. This paper focuses on the simulation of 6G systems that rely on a 3D representation of the environment, as captured by cameras and other sensors. We present new strategies for obtaining paired MIMO channels and multimodal data. We also discuss trade-offs between speed and accuracy when generating channels via ray tracing. We finally provide beam selection simulation results to assess the proposed methodology. |
Palavras-chave: | 6G Artificial intelligence Machine learning MIMO Ray tracing |
Título do Periódico: | ITU Journal on Future and Evolving Technologies |
ISSN: | 2616-8375 |
País: | Suica |
Instituição: | International Telecommunication Union |
Sigla da Instituição: | ITU |
Tipo de Acesso: | Acesso Aberto |
Fonte URI: | https://www.itu.int/pub/S-JNL-VOL2.ISSUE4-2021-A10 |
Identificador DOI: | 10.52953/SJAS4492 |
Aparece nas coleções: | Artigos Científicos - ITEC |
Arquivos associados a este item:
Arquivo | Descrição | Tamanho | Formato | |
---|---|---|---|---|
Article_SimulationMachineLearning.pdf | 8,64 MB | Adobe PDF | Visualizar/Abrir |
Este item está licenciado sob uma Licença Creative Commons