Por favor, use este identificador para citar o enlazar este ítem: https://repositorio.ufpa.br/jspui/handle/2011/14867
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.creatorOLIVEIRA, Ailton Pinto de-
dc.creatorNASCIMENTO, Arthur Matheus do-
dc.creatorCOSTA, Walter Tadeu Neves Frazão da-
dc.creatorTRINDADE, Isabela Pamplona-
dc.creatorBASTOS, Felipe Henrique Bastos e-
dc.creatorGOMES, Diego de Azevedo-
dc.creatorMÜLLER, Francisco Carlos Bentes Frey-
dc.creatorKLAUTAU JÚNIOR, Aldebaro Barreto da Rocha-
dc.date.accessioned2022-10-21T16:47:31Z-
dc.date.available2022-10-21T16:47:31Z-
dc.date.issued2021-
dc.identifier.citationOLIVEIRA, Ailton et al. Simulation of machine learning-based 6G systems in virtual worlds. ITU Journal on Future and Evolving Technologies, online, v. 2, n. 4, p. 113-123, 2021. DOI: https://doi.org/10.52953/SJAS4492. Disponível em: http://repositorio.ufpa.br:8080/jspui/handle/2011/14867. Acesso em:.pt_BR
dc.identifier.issn2616-8375​​pt_BR
dc.identifier.urihttp://repositorio.ufpa.br:8080/jspui/handle/2011/14867-
dc.description.abstractDigital representations of the real world are being used in many applications, such as augmented reality. 6G systems will not only support use cases that rely on virtual worlds but also benefit from their rich contextual information to improve performance and reduce communication overhead. This paper focuses on the simulation of 6G systems that rely on a 3D representation of the environment, as captured by cameras and other sensors. We present new strategies for obtaining paired MIMO channels and multimodal data. We also discuss trade-offs between speed and accuracy when generating channels via ray tracing. We finally provide beam selection simulation results to assess the proposed methodology.en
dc.description.provenanceSubmitted by Edisangela Bastos (edisangela@ufpa.br) on 2022-10-21T16:47:19Z No. of bitstreams: 2 2204.09518.pdf: 8844740 bytes, checksum: 49a2b2f05cdd2c32f34d2d36795c7cd0 (MD5) license_rdf: 811 bytes, checksum: e39d27027a6cc9cb039ad269a5db8e34 (MD5)en
dc.description.provenanceApproved for entry into archive by Edisangela Bastos (edisangela@ufpa.br) on 2022-10-21T16:47:31Z (GMT) No. of bitstreams: 2 2204.09518.pdf: 8844740 bytes, checksum: 49a2b2f05cdd2c32f34d2d36795c7cd0 (MD5) license_rdf: 811 bytes, checksum: e39d27027a6cc9cb039ad269a5db8e34 (MD5)en
dc.description.provenanceMade available in DSpace on 2022-10-21T16:47:31Z (GMT). No. of bitstreams: 2 2204.09518.pdf: 8844740 bytes, checksum: 49a2b2f05cdd2c32f34d2d36795c7cd0 (MD5) license_rdf: 811 bytes, checksum: e39d27027a6cc9cb039ad269a5db8e34 (MD5) Previous issue date: 2021en
dc.languageengpt_BR
dc.publisherInternational Telecommunication Unionpt_BR
dc.relation.ispartofITU Journal on Future and Evolving Technologiespt_BR
dc.rightsAcesso Abertopt_BR
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/br/*
dc.source.urihttps://www.itu.int/pub/S-JNL-VOL2.ISSUE4-2021-A10pt_BR
dc.subject6Gen
dc.subjectArtificial intelligenceen
dc.subjectMachine learningen
dc.subjectMIMOen
dc.subjectRay tracingen
dc.titleSimulation of machine learning-based 6G systems in virtual worldsen
dc.typeArtigo de Periódicopt_BR
dc.publisher.countrySuicapt_BR
dc.publisher.initialsITUpt_BR
dc.creator.Latteshttp://lattes.cnpq.br/4530142155618120pt_BR
dc.creator.Latteshttp://lattes.cnpq.br/5688847841582985pt_BR
dc.creator.Latteshttp://lattes.cnpq.br/7955113103427534pt_BR
dc.creator.Latteshttp://lattes.cnpq.br/9270326190332043pt_BR
dc.creator.Latteshttp://lattes.cnpq.br/6605156999516662pt_BR
dc.creator.Latteshttp://lattes.cnpq.br/5116561408505726pt_BR
dc.creator.Latteshttp://lattes.cnpq.br/4883158238383471pt_BR
dc.creator.Latteshttp://lattes.cnpq.br/1596629769697284pt_BR
dc.citation.volume2pt_BR
dc.citation.issue4pt_BR
dc.citation.spage113pt_BR
dc.identifier.doi10.52953/SJAS4492pt_BR
dc.description.affiliationOLIVEIRA, A. P.; NASCIMENTO, A. M.; COSTA, W. T. N. F.; TRINDADE, I. P.; BASTOS, F. H. B., MÜLLER, F. C. B. F.; KLAUTAU JÚNIOR, A. B. R. Universidade Federal do Parápt_BR
dc.citation.epage123pt_BR
Aparece en las colecciones: Artigos Científicos - ITEC

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
Article_SimulationMachineLearning.pdf8,64 MBAdobe PDFVisualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons