Por favor, use este identificador para citar o enlazar este ítem: https://repositorio.ufpa.br/jspui/handle/2011/14867
Tipo: Artigo de Periódico
Fecha de publicación : 2021
Autor(es): OLIVEIRA, Ailton Pinto de
NASCIMENTO, Arthur Matheus do
COSTA, Walter Tadeu Neves Frazão da
TRINDADE, Isabela Pamplona
BASTOS, Felipe Henrique Bastos e
GOMES, Diego de Azevedo
MÜLLER, Francisco Carlos Bentes Frey
KLAUTAU JÚNIOR, Aldebaro Barreto da Rocha
metadata.dc.description.affiliation: OLIVEIRA, A. P.; NASCIMENTO, A. M.; COSTA, W. T. N. F.; TRINDADE, I. P.; BASTOS, F. H. B., MÜLLER, F. C. B. F.; KLAUTAU JÚNIOR, A. B. R. Universidade Federal do Pará
Título : Simulation of machine learning-based 6G systems in virtual worlds
Citación : OLIVEIRA, Ailton et al. Simulation of machine learning-based 6G systems in virtual worlds. ITU Journal on Future and Evolving Technologies, online, v. 2, n. 4, p. 113-123, 2021. DOI: https://doi.org/10.52953/SJAS4492. Disponível em: http://repositorio.ufpa.br:8080/jspui/handle/2011/14867. Acesso em:.
Resumen : Digital representations of the real world are being used in many applications, such as augmented reality. 6G systems will not only support use cases that rely on virtual worlds but also benefit from their rich contextual information to improve performance and reduce communication overhead. This paper focuses on the simulation of 6G systems that rely on a 3D representation of the environment, as captured by cameras and other sensors. We present new strategies for obtaining paired MIMO channels and multimodal data. We also discuss trade-offs between speed and accuracy when generating channels via ray tracing. We finally provide beam selection simulation results to assess the proposed methodology.
Palabras clave : 6G
Artificial intelligence
Machine learning
MIMO
Ray tracing
Series/Report no.: ITU Journal on Future and Evolving Technologies
ISSN : 2616-8375​​
País: Suica
Editorial : International Telecommunication Union
Sigla da Instituição: ITU
metadata.dc.rights: Acesso Aberto
metadata.dc.source.uri: https://www.itu.int/pub/S-JNL-VOL2.ISSUE4-2021-A10
metadata.dc.identifier.doi: 10.52953/SJAS4492
Aparece en las colecciones: Artigos Científicos - ITEC

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
Article_SimulationMachineLearning.pdf8,64 MBAdobe PDFVisualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons