Please use this identifier to cite or link to this item: https://repositorio.ufpa.br/jspui/handle/2011/14867
metadata.dc.type: Artigo de Periódico
Issue Date: 2021
metadata.dc.creator: OLIVEIRA, Ailton Pinto de
NASCIMENTO, Arthur Matheus do
COSTA, Walter Tadeu Neves Frazão da
TRINDADE, Isabela Pamplona
BASTOS, Felipe Henrique Bastos e
GOMES, Diego de Azevedo
MÜLLER, Francisco Carlos Bentes Frey
KLAUTAU JÚNIOR, Aldebaro Barreto da Rocha
metadata.dc.description.affiliation: OLIVEIRA, A. P.; NASCIMENTO, A. M.; COSTA, W. T. N. F.; TRINDADE, I. P.; BASTOS, F. H. B., MÜLLER, F. C. B. F.; KLAUTAU JÚNIOR, A. B. R. Universidade Federal do Pará
Title: Simulation of machine learning-based 6G systems in virtual worlds
Citation: OLIVEIRA, Ailton et al. Simulation of machine learning-based 6G systems in virtual worlds. ITU Journal on Future and Evolving Technologies, online, v. 2, n. 4, p. 113-123, 2021. DOI: https://doi.org/10.52953/SJAS4492. Disponível em: http://repositorio.ufpa.br:8080/jspui/handle/2011/14867. Acesso em:.
Abstract: Digital representations of the real world are being used in many applications, such as augmented reality. 6G systems will not only support use cases that rely on virtual worlds but also benefit from their rich contextual information to improve performance and reduce communication overhead. This paper focuses on the simulation of 6G systems that rely on a 3D representation of the environment, as captured by cameras and other sensors. We present new strategies for obtaining paired MIMO channels and multimodal data. We also discuss trade-offs between speed and accuracy when generating channels via ray tracing. We finally provide beam selection simulation results to assess the proposed methodology.
Keywords: 6G
Artificial intelligence
Machine learning
MIMO
Ray tracing
Series/Report no.: ITU Journal on Future and Evolving Technologies
ISSN: 2616-8375​​
metadata.dc.publisher.country: Suica
Publisher: International Telecommunication Union
metadata.dc.publisher.initials: ITU
metadata.dc.rights: Acesso Aberto
metadata.dc.source.uri: https://www.itu.int/pub/S-JNL-VOL2.ISSUE4-2021-A10
metadata.dc.identifier.doi: 10.52953/SJAS4492
Appears in Collections:Artigos Científicos - ITEC

Files in This Item:
File Description SizeFormat 
Article_SimulationMachineLearning.pdf8,64 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons