Monitoramento inteligente de peixes amazônicos: detecção e classificação com aprendizado profundo em passagens de peixes

Imagem de Miniatura

Data

31-03-2025

Afiliação

Orientador(es)

GIARRIZZO, Tommaso Lattes

Título da Revista

ISSN da Revista

Título de Volume

item.page.theme

Tipo de acesso

Acesso AbertoAttribution-NonCommercial-NoDerivatives 4.0 Internationalaccess-logo

Contido em

Citar como

NOGUEIRA, Felipe de Luca dos Santos. Monitoramento inteligente de peixes amazônicos: detecção e classificação com aprendizado profundo em passagens de peixes. Orientador: Tommaso Giarrizzo; Coorientador: Eurico Mesquita Noleto Filho. 2025. 33 f. Dissertação (Mestrado em Biodiversidade e Conservação) - Campus Universitário de Altamira, Universidade Federal do Pará, Altamira, 2025. Disponível em: https://repositorio.ufpa.br/handle/2011/17909. Acesso em:.

DOI

A Bacia Amazˆonica possui um dos maiores potenciais hidrel´etricos do mundo, sendo respons´avel por uma parcela significativa da gera¸c˜ao de energia no Brasil. A constru¸c˜ao de empreendimentos hidrel´etricos na regi˜ao, como o Complexo Hidrel´etrico Belo Monte, visa atender `a crescente demanda energ´etica, mas tamb´em pode impactar a dinˆamica migrat´oria e a conserva¸c˜ao da ictiofauna amazˆonica. Diante disso, torna-se essencial o desenvolvimento de sistemas de monitoramento automatizados para avaliar a efetividade das estruturas de mitiga¸c˜ao, como as passagens de peixes. Este estudo apresenta o desenvolvimento de um sistema de monitoramento automatizado para a detec¸c˜ao e classifica¸c˜ao de esp´ecies de peixes na passagem de peixes da barragem do sitio Pimental, que integra o Complexo Hidrel´etrico Belo Monte. A pesquisa foi conduzida no sistema de transposi¸c˜ao de peixes (STP) da barragem do sitio Pimental, utilizando t´ecnicas de vis˜ao computacional. Para a constru¸c˜ao do conjunto de dados, quadros foram extra´ıdos de v´ıdeos subaqu´aticos capturados pelo STP, sendo posteriormente anotados manualmente na plataforma Darwin V7. O banco de dados resultante foi composto por 1000 imagens, divididas em conjuntos de treinamento (700), valida¸c˜ao (150) e teste (150). As dezenove esp´ecies foram selecionadas com base na frequˆencia de ocorrˆencia e importˆancia migrat´oria, sendo destacadas Phractocephalus hemioliopterus e Cichla melaniae, entre outras. A modelagem foi realizada utilizando Redes Neurais Convolucionais (RNCs), implementadas no modelo YOLO v8, conhecido por sua eficiˆencia em tarefas de detec¸c˜ao de imagens. A t´ecnica de aumento de dados (data augmentation) foi aplicada para expandir a diversidade do conjunto de treinamento, introduzindo transforma¸c˜oes como rota¸c˜oes, transla¸c˜oes, escalonamento e ajustes de brilho. O treinamento foi conduzido na plataforma Google Colab PRO, utilizando uma GPU NVIDIA A100, garantindo alto desempenho no processamento das imagens. Durante o processo, foram ajustados parˆametros como learning rate (0,01), momentum (0,937) e weight decay (0,0005), visando minimizar o overfitting e melhorar a generaliza ¸c˜ao do modelo. A avalia¸c˜ao do modelo foi realizada por meio de m´etricas como precis˜ao, recall, F1-score e mean Average Precision (mAP). Os resultados indicaram um desempenho superior para esp´ecies mais representadas no conjunto de dados, como Phractocephalus hemioliopterus (F1-score de 91%) e Cichla melaniae (87%). Esp´ecies menos frequentes apresentaram menor precis˜ao na classifica¸c˜ao, como Leporinus friderici (52%) e Leporinus sp2 (55%).As curvas de aprendizado demonstraram redu¸c˜ao progressiva das perdas de treinamento e valida¸c˜ao, evidenciando a capacidade do modelo de reconhecer padr˜oes visuais das esp´ecies. O modelo manteve desempenho consistente em diferentes condi¸c˜oes ambientais, incluindo alta turbidez e reflexos de ilumina¸c˜ao artificial, refor¸cando seu potencial para o monitoramento cont´ınuo da biodiversidade aqu´atica. Entretanto, algumas limita¸c˜oes foram identificadas, como a variabilidade sazonal na qualidade das imagens e a baixa representatividade de certas esp´ecies, o que pode comprometer a generaliza¸c˜ao do modelo. Al´em disso, o tempo de processamento e a necessidade de infraestrutura computacional robusta s˜ao fatores a serem considerados. A implementa¸c˜ao deste sistema no STP, dentro do Complexo Hidrel´etrico Belo Monte, representa um avan¸co na avalia¸c˜ao de estruturas mitigadoras de impactos ambientais, fornecendo informa¸c˜oes fundamentais para o manejo sustent´avel da fauna aqu´atica em grandes empreendimentos hidrel´etricos.

browse.metadata.ispartofseries

Área de concentração

País

Brasil

Instituição(ões)

Universidade Federal do Pará

Sigla(s) da(s) Instituição(ões)

UFPA

item.page.isbn

Fonte

item.page.dc.location.country

Fonte URI

Disponível na internet via correio eletrônico: bibaltamira@ufpa.br