Please use this identifier to cite or link to this item: https://repositorio.ufpa.br/jspui/handle/2011/7652
metadata.dc.type: Artigo de Periódico
Issue Date: Sep-2016
metadata.dc.creator: GONÇALVES, Wanderson Gonçalves e
RIBEIRO, Hebe Morganne Campos
SÁ, José Alberto Silva de
MORALES, Gundisalvo Piratoba
FERREIRA FILHO, Hélio Raymundo
ALMEIDA, Arthur da Costa
Title: Classificação de estratos florestais utilizando redes neurais artificiais e dados de sensoriamento remoto
Other Titles: Classification of forest types using artificial neural networks and remote sensing data
metadata.dc.description.sponsorship: 
Citation: GONCALVES, Wanderson Gonçalves e et al. Classificação de estratos florestais utilizando redes neurais artificiais e dados de sensoriamento remoto. Revista Ambiente & Água, Taubaté, v. 11, n. 3, p. 612-624, jul./set. 2016. DOI: http://dx.doi.org/10.4136/ambi-agua.1871. Disponível em: http://repositorio.ufpa.br/jspui/handle/2011/9377. Acesso em:.
metadata.dc.description.resumo: O presente estudo objetivou a classificação de tipologias florestais por meio de redes neurais artificiais utilizando dados provenientes de um inventário florestal, fornecido pelo Instituto de Desenvolvimento Florestal e da Biodiversidade do Estado do Pará (IDEFLOR-BIO), e das bandas 3, 4 e 5 do TM do satélite Landsat 5. As informações provenientes das imagens de satélite foram extraídas por meio do aplicativo QGIS 2.8.1 Wien e utilizadas no banco de dados para o treinamento das redes neurais pertencentes às ferramentas do software MATLAB(r) R2011b. Foram treinadas redes neurais como classificadores de dois tipos florestais: Floresta Ombrófila Densa de Terras baixas Dossel emergente (Dbe) e Floresta Ombrófila Densa Terras baixas Dossel emergente mais Aberta com palmeiras (Dbe + Abp) no conjunto de glebas estaduais Mamuru-Arapiuns, Pará, e avaliadas usando os indicadores matriz de confusão, cálculo de acurácia global, coeficiente Kappa e o gráfico de características do receptor operacional (ROC). O melhor resultado de classificação foi obtido por meio da rede neural probabilística de função de base radial (RBF) "newpnn", com uma acurácia global de 88%, e coeficiente Kappa de 76%, sendo avaliado como um classificador muito bom, evidenciando a aplicação dessa metodologia na análise de áreas com potencial para prestar serviços ecossistêmicos e, principalmente, na prestação de serviços ambientais em áreas antrópicas que adotam sistema de produção agropecuária com baixa emissão de carbono na Amazônia.
Abstract: This study classified forest types using neural network data from a forest inventory provided by the "Florestal e da Biodiversidade do Estado do Pará" (IDEFLOR-BIO), and Bands 3, 4 and 5 of TM from the Landsat satellite. The information from the satellite images was extracted using QGIS software 2.8.1 Wien and was used as a database for training neural networks belonging to the software tools package MATLAB(r) R2011b. The neural networks were trained to classify two forest types: Rain Forest of Lowland Emerging Canopy (Dbe) and Rain Forest of Lowland Emerging Canopy plus Open with palm trees (Dbe + Abp) in the Mamuru Arapiuns glebes of Pará State, and were evaluated in terms of the indicators confusion matrix, overall accuracy, the Kappa coefficient, and the receiver operating characteristics chart (ROC). The best result of classification was obtained by the probabilistic neural network of radial basis function (RBF) newpnn, with an overall accuracy of 88%, and a Kappa coefficient of 76%, showing it to be a very good classifier, and demonstrating the potential of this methodology to provide ecosystem services, particularly in anthropogenic areas in the Amazon that adopt agricultural systems with low carbon emissions.
Keywords: Inteligência artificial
Redes neurais artificiais
Inventário florestal
Vegetação tropical
Floresta Ombrófila
Series/Report no.: Revista Ambiente & Água
ISSN: 1980-993X
metadata.dc.publisher.country: Brasil
Publisher: Instituto de Pesquisas Ambientais em Bacias Hidrográficas
metadata.dc.publisher.initials: IPABHi
metadata.dc.rights: Acesso Aberto
metadata.dc.source.uri: http://ref.scielo.org/9f5htt
metadata.dc.identifier.doi: http://dx.doi.org/10.4136/ambi-agua.1871
Appears in Collections:Artigos Científicos - CCAST

Files in This Item:
File Description SizeFormat 
Artigo_ClassificacaoEstratosFlorestais.pdf1,15 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons